Jones, P. G. \& Kirby, A. J. (1984). J. Am. Chem. Soc. 106, 6207-6212.
Jones, P. G., Sheldrick, G. M., Kirby, A. J. \& Briggs, A. J. (1984). Acta Cryst. C40, 1061-1065.

Khorana, H. G., Tener, O. M., Wright, C. S. \& Moffatt, J. G. (1957). J. Am. Chem. Soc. 79, 430-436.

Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Lanham, W. M. (1959). US Patent 2892862. Chem. Abstr. (1960). 54, 1574d.
Rogers, D. (1981). Acta Cryst. A37, 734-741.
Van Nuffel, P., Lenstra, A. T. H. \& Geise, H. J. (1980). Cryst. Struct. Commun. 9, 733-738.

Acta Cryst. (1985). C41, 1377-1379

Bond Length and Reactivity. Structure of 1-Methoxymethoxy-3,5-dinitrobenzene, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{*}$

By Peter G. Jones and George M. Sheldrick
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen, Federal Republic of Germany

and Anthony J. Kirby and Andrew J. Briggs
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England

(Received 4 February 1985; accepted 28 May 1985)

Abstract. $M_{r}=228 \cdot 17$, orthorhombic, $P 22_{1} 2_{1}, a=$ 5.387 (2) , $\quad b=11.053$ (2), $\quad c=16.783$ (3) $\AA, \quad V=$ 999.3 (5) $\AA^{3}, Z=4, D_{x}=1.516(8) \mathrm{g} \mathrm{cm}^{-3}, \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})$ $=0.71069 \AA, \mu=1.0 \mathrm{~cm}^{-1}, F(000)=472, T=293 \mathrm{~K}$. $R=0.041$ for 1654 observed reflections. The $\mathrm{C}-\mathrm{O}$ bond length to the leaving group (referred to acetal hydrolysis) is 1.431 (3) \AA; this forms part of a linear correlation between bond length and reactivity in formaldehyde acetals $\mathrm{MeOCH}_{2}-\mathrm{OR}$. The conformation about the acetal centre is close to ($-s c,-s c$) with torsion angles as expected for an acyclic acetal.

Introduction. Our work on bond length and reactivity in tetrahydropyranyl acetal (1) and glucoside systems (Jones \& Kirby, 1984; Briggs, Glenn, Jones, Kirby \& Ramaswamy, 1984) has shown that there is a very simple relationship between the length of an acetal $\mathrm{C}-\mathrm{OR}$ bond and the rate at which it is broken hydrolytically: in a given series, the longer the bond, the more easily it is broken. Furthermore, there is some evidence that this generalization also holds for comparisons of acetals from different series. Thus in aryl α-glucosides (2), which are many orders of magnitude less reactive than the parent tetrahydropyranyl acetals (1), the exocyclic acetal $\mathrm{C}-\mathrm{OAr}$ bond is always substantially shorter than the $\mathrm{C}-\mathrm{OAr}$ bond of the corresponding axial acetal (1).

[^0]
(1)

(2)

(3)

As an initial test of the strength of this second generalization, we recently determined the crystal structure of (3, Ar = 2,4-dinitrophenyl) (Jones, Sheldrick, Glenn \& Kirby, 1983). The reactivity of this acetal is known to lie between that of the 2,4dinitrophenyl derivatives of (1) and (2), and a similar relationship was found for the length of the $\mathrm{C}-\mathrm{OAr}$ bond broken in the reaction.

A more reliable measure of the ease with which a bond can be stretched and, presumably, broken is the sensitivity of its length to the nature of the leaving group. The slope of the (good) linear plot of the length of the $\mathrm{C}-\mathrm{OAr}$ bond of axial acetals (1) against the $\mathrm{p} K_{a}$ of the conjugate acid (ArOH) of the leaving group, is some 6.5 times greater than that of the corresponding plot for α-glucosides (Briggs et al., 1984), which show very little dependence on Ar. It is thus of interest to measure the sensitivity of the $\mathrm{C}-\mathrm{OR}$ bond length of a series of formaldehyde acetals, $\mathrm{MeOCH}_{2}-\mathrm{OR}$, to the nature of the group R. Five structures containing this unit have been reported recently (Jones, Kennard, Kirby \& Osborne, 1978; Jones, Kennard, Kirby, Osborne \& Malik, 1978; Egert, Cruse \& Kennard, 1983; Jones, Sheldrick, Kirby \& Briggs, 1984; Jones et © 1985 International Union of Crystallography
al., 1983). We here report the crystal structure of a further compound, of intermediate $\mathrm{p} K_{a}$ of ArOH (3, $\mathrm{Ar}=3,5$-dinitrophenyl), and the sensitivity of the length of the bond $\mathrm{C}-\mathrm{OR}$ of acetals $\mathrm{MeOCH}_{2} \mathrm{OR}$ to the $\mathrm{p} K_{a}$ of ROH .

Experimental. Colourless prisms of 1-methoxymethoxy-3,5-dinitrobenzene (3, $\mathrm{Ar}=3$,5-dinitrophenyl, prepared from methoxymethoxy chloride and the phenolate) were obtained by the diffusion of diisopropyl ether into a solution in ethyl acetate.

Crystal $0.55 \times 0.4 \times 0.15 \mathrm{~mm} .3482$ profile-fitted intensities (Clegg, 1981), recorded on a Stoe-Siemens four-circle diffractometer. Monochromated Mo K α radiation, $2 \theta_{\max } 55^{\circ}$. Three check reflections, no significant intensity change. $R_{\text {int }} 0.022$ for 2273 unique reflections (index ranges after merging: $h-6 \rightarrow+6$, $k 0 \rightarrow 14, l 0 \rightarrow 21$), 1654 with $F>4 \sigma(F)$ used for all calculations (program system $S H E L X T L$, written by GMS). Cell constants refined from 2θ values of 40 reflections in range $20-23^{\circ}$. No absorption correction.

Structure solution by routine direct methods. Refinement on F to $R 0.041, w R 0.040$ [all non-H atoms anisotropic; H atoms included using riding model with $\mathrm{C}-\mathrm{H} 0.96 \AA, \mathrm{H}-\mathrm{C}-\mathrm{H} 109.5^{\circ}, U(\mathrm{H})=1.2 \quad U_{\mathrm{eq}}(\mathrm{C})$; 149 parameters, weighting scheme $w^{-1}=\sigma^{2}(F)+$ $0.0002 F^{2}, S=1 \cdot 50$, slope of normal probability plot 1.35; extinction correction of the form $F_{\text {corr }}=$ $F_{c}\left(1+x F_{c}{ }^{2} / \sin 2 \theta\right)^{-0.25}$ with $\left.x=1 \cdot 1(1) \times 10^{-5}\right]$. No attempt to assign an absolute structure (Jones, 1984). Max. $\Delta / \sigma 0.04$. Max. and min. heights in final $\Delta \rho$ map +0.29 and $-0.20 \mathrm{e}^{\AA^{-3}}$. Atomic scattering factors those of SHELXTL.

Discussion. Final atomic coordinates are given in Table 1 with derived parameters in Table 2.*

The conformation about the acetal centre (see Fig. 1) is close to ($-s c,-s c$), with torsion angles $\mathrm{C}(12)-$ $\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(1)$ and $\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(1)-\mathrm{C}(1)$ of -70.4 and $-64 \cdot 1^{\circ}$ respectively, as expected for an acyclic acetal (Jeffrey, Pople, Binkley \& Vishveshwara, 1978). The same conformation is observed for all but one (Egert et al., 1983) of the methoxymethyl acetals for which crystal structures are available, and for tetrahydropyranyl acetals and α-glucosides. Comparisons of bond lengths between the three series of compounds are thus unaffected by conformational differences.

The length of the C -OAr bond in 1-methoxy-methoxy-3,5-dinitrobenzene is 1.431 (3) \AA, lying between the lengths expected [from the linear correlations

[^1]given by Briggs et al. (1984)] for the corresponding bonds of an axial tetrahydropyranyl acetal ($1.450 \AA$) or α-glucoside ($1.420 \AA$) derived from a phenol of $\mathrm{p} K_{a}$ 6.68 (Martin \& Butler, 1939). The plot of the $\mathrm{C}-\mathrm{O} R$ bond length against the $\mathrm{p} K_{a}$ of $R \mathrm{OH}$ for the five organic compounds for which accurate crystal structures are available* (Fig. 2) gives a good straight line (correction

[^2]Table 1. Atom coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x	${ }^{\prime}$	z	$U_{\text {eq }}{ }^{*}$
C(1)	5299 (4)	2551 (2)	2626 (1)	53 (1)
C(2)	3548 (4)	1681 (2)	2817 (1)	56 (1)
C(3)	1790 (4)	1391 (2)	2252 (1)	53 (1)
C(4)	1625 (4)	1933 (2)	1514 (1)	54 (1)
C(5)	3372 (4)	2811 (1)	1361 (1)	50 (1)
C(6)	5215 (4)	3122 (2)	1888 (1)	52 (1)
N(3)	-74 (4)	465 (2)	2456 (1)	67 (1)
$\mathrm{O}(31)$	-69 (3)	66 (1)	3137 (1)	80 (1)
$\mathrm{O}(32)$	-1529 (4)	154 (2)	1942 (1)	100 (1)
N (5)	3249 (4)	3484 (1)	605 (1)	63 (1)
$\mathrm{O}(51)$	4699 (4)	4307 (1)	498 (1)	84 (1)
$\mathrm{O}(52)$	1688 (4)	3189 (2)	125 (1)	93 (1)
$\mathrm{O}(1)$	7207 (3)	2908 (1)	3107 (1)	72 (1)
$\mathrm{C}(11)$	7263 (4)	2471 (2)	3909 (1)	73 (1)
$\mathrm{O}(2)$	5290 (4)	2869 (1)	4349 (1)	73 (1)
C(12)	5405 (7)	4132 (2)	4526 (2)	98 (1)

Table 2. Bond lengths (\AA), bond angles and torsion angles $\left(^{\circ}\right.$)

$\mathrm{C}(1)-\mathrm{C}(2) \quad 1 \cdot 3$	1-385 (4)	$\mathrm{C}(1)-\mathrm{C}(6) \quad 1.39$	1.391 (4)
$\mathrm{C}(1)-\mathrm{O}(1) \quad 1.36$	1.366 (3)	$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.37$	1.378 (4)
$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.37$	1.378 (4)	$\mathrm{C}(3)-\mathrm{N}(3) \quad 1.47$	1.474 (4)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.37$	1.376 (4)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.373$	1.373 (4)
$\mathrm{C}(5)-\mathrm{N}(5) \quad 1.4$	1.472 (3)	$\mathrm{N}(3)-\mathrm{O}(31) \quad 1.22$	1.225 (4)
$\mathrm{N}(3)-\mathrm{O}(32) \quad 1.2$	1.214 (4)	$\mathrm{N}(5)-\mathrm{O}(51) \quad 1.212$	1.212 (4)
$\mathrm{N}(5)-\mathrm{O}(52) \quad 1$.	1.209 (4)	$\mathrm{C}(11)-\mathrm{O}(1) \quad 1.431$	1.431 (3)
$\mathrm{C}(11)-\mathrm{O}(2) \quad 1.3$	1.367 (4)	$\mathrm{C}(12)-\mathrm{O}(2) \quad 1.42$	1.428 (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6) \quad 11$	119.9 (3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1) \quad 125$.	125.2 (3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1) \quad 11$	114.9 (3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) \quad 118$	118.1 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) \quad 12$	124.1 (3)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(3) \quad 118$	118.0 (3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(3) \quad 11$	117.8 (3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \quad 115$	115.5 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) \quad 12$	123.4 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5) \quad 119.2$	119.2 (3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(5) \quad 11$	117.4 (3)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5) \quad 118$	118.9 (3)
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{O}(3!) \quad 11$	117.7 (3)	$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{O}(32) \quad 118$	118.1 (3)
$\mathrm{O}(31)-\mathrm{N}(3)-\mathrm{O}(32) \quad 12$	124.2 (3)	$\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(51) \quad 118$	118.5 (3)
$\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(52) \quad 11$	117.9 (3)	$\mathrm{O}(51)-\mathrm{N}(5)-\mathrm{O}(52) \quad 123$	$123 \cdot 6$ (3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(11) \quad 11$	118.4 (3)	$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{O}(2) \quad 112$	$112 \cdot 5$ (3)
$\mathrm{C}(11)-\mathrm{O}(2)-\mathrm{C}(12) \quad 113 \cdot 2$ (3)			
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	3) 1.4 (4)*	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-177.6(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	(5) 0.3 (4)	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	179.4 (3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(11)$	11) $\quad-8 \cdot 1(4)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(11)$	172.9 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	4) -1.6(4)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(3)$	-180.0 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	5) $0.1(4)$	$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	178.5 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{O}(31)$	31) $\quad 5 \cdot 1(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{O}(32)$	-175.5 (3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{O}(31)$	31) -173.3(3)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{O}(32)$	$6 \cdot 0$ (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	(6) $1.7(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5)$	-176.6(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	(1) $\quad-1.9(4)$	$\mathrm{N}(5)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	176.4 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(51)$	51) 175.4 (3)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(52)$	-4.1 (4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(51)$	$51) \quad-3.0(4)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{O}(52)$	177.5 (3)
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{O}(2)$	(2) $-64 \cdot 1(4)$	$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{O}(2)-\mathrm{C}(12)$	$-70 \cdot 4$ (3)

* Sign convention as defined by Klyne \& Prelog (1960).

Fig. 1. Thermal ellipsoid plot (50% level) of the molecule of (3, $\mathrm{Ar}=3,5$-dinitrophenyl), showing the atom-numbering scheme.

Fig. 2. Plot of the $\mathrm{CH}_{2}-\mathrm{OR}$ bond length vs the $\mathrm{p} K_{a}$ of ROH for methoxymethyl acetals $\mathrm{MeOCH}_{2} \mathrm{OR}$. Data points are for (a) $R=2,4$-dinitrophenyl (Jones et al., 1983); (b) $R=3,5$-dinitrophenyl (this paper); (c) $R=3$-(but-2-enoic acid) (Jones, Kennard, Kirby, Osborne \& Malik, 1978); (d) $R=2$-carboxyphenyl (Jones, Sheldrick, Kirby \& Briggs, 1984); and (e) a methoxymethoxy derivative of a steroid (Egert et al., 1983). (A second diastereoisomer of this last compound is omitted, because the acetal group has an extended conformation.) $\mathrm{p} K_{a}$'s used are 4.11 for 2,4-dinitrophenol (Jencks \& Regenstein, 1976), 6.68 for 3,5-dinitrophenol (Martin \& Butler, 1939), 8.5 for the enol of ethyl acetoacetate (Alcais \& Brouillard, 1972), 8.6 for methyl salicylate (Bromilow, Khan \& Kirby, 1972), and 16 for the $3-\mathrm{OH}$ group of a steroid. The equation of the least-squares line correlating the five points is given in the text. Omitting point (b) improves the correlation coefficient to 0.9999 .
coefficient $r=0.979$) of slope -3.74×10^{-3}. This slope is a measure of the sensitivity of the length of the $\mathrm{C}-\mathrm{OR}$ bond to the nature of the leaving group $\left(\mathrm{RO}^{-}\right)$, and it too lies between the slopes observed for the corresponding plots for axial tetrahydropyranyl acetals and α-glucosides (6.5×10^{-3} and 1.0×10^{-3} respectively: Briggs et al., 1984).

Thus the length of the $\mathrm{C}-\mathrm{OR}$ bond (to the more electronegative oxygen atom) in three series of acetals with varying substitution at carbon shows a linear correlation with reactivity as the leaving group $O R$ is varied. Moreover, the sensitivity to the nature of the leaving group RO^{-}, which is a measure of how easy it is to stretch the $\mathrm{C}-\mathrm{OR}$ bond in the ground state, is also higher in the more reactive series of compounds.

We thank the Fonds der Chemischen Industrie for financial support.

References

Alcais, P. \& Brouillard, R. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 1214-1219.
Briggs, A. J., Glenn, R., Jones, P. G., Kirby, A. J. \& Ramaswamy, P. (1984). J. Am. Chem. Soc. 106, 6200-6206.
Bromilow, R., Khan, S. A. \& Kirby, A. J. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 911-918.
Clegg, W. (1981). Acta Cryst. A37, 22-28.
Egert, E., Cruse, W. B. T. \& Kennard, O. (1983). Acta Cryst. C39, 95-99.
Jeffrey, G. A., Pople, J. A., Binkley, J. S. \& Vishveshwara, S. (1978). J. Am. Chem. Soc. 100, 373-379.

Jencks, W. P. \& Regenstein, J. (1976). Handbook of Biochemistry, Vol. I, 3rd ed. p. 314. Cleveland, Ohio: Chemical Rubber Publishing Co. Inc.
Jones, P. G. (1984). Acta Cryst. A40, 660-662.
Jones, P. G., K finnard, O., Kirby, A. J. \& Osborne, R. (1978). Acta Cryst. B34, 2923-2925.
Jones, P. G., Kennard, O., Kirby, A. J., Osborne, R. \& Malik, K. M. A. (1978). Acta Cryst. B34, 2925-2927.

Jones, P. G. \& Kirby, A. J. (1984). J. Am. Chem. Soc. 106, 6207-6212.
Jones, P. G., Sheldrick, G. M., Glenn, R. \& Kirby, A. J. (1983). Z. Kristallogr. 163, 85-91.

Jones, P. G., Sheldrick, G. M., Kirby, A. J. \& Briggs, A. J. (1984). Acta Cryst. C40, 545-547.

Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Martin, D. C. \& Butler, J. A. V. (1939). J. Chem. Soc. pp. 1366-1369.

[^0]: * Crystal Structures of Acetals. 24. Part 23: Jones, Sheldrick, Kirby \& Briggs (1984).

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42264 (17 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * One compound omitted from the plot, because no value is available for the $\mathrm{p} K_{a}$ of $R \mathrm{OH}$, is the enol of an ester of 2-oxocyclopentene-1-carboxylic acid. The $\mathrm{C}-\mathrm{OR}$ bond length in 2-methoxymethoxycyclopentene-1-carboxylic acid (Jones, Kennard, Kirby \& Osborne, 1978) is 1.445 (3) \AA. corresponding to a $\mathrm{p} K_{a}$ of $5 \cdot 2$, according to the bond length $-\mathrm{p} K_{a}$ correlation.

